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Solution 1 by Michel Bataille, Rouen, France. The inequality is obvious if

ab(a —b) + be(b — ¢) + ca(c — a) < 0 and otherwise is equivalent to
54((a—b)(b—c)a—c)* < ((a—b)?+ (b—)* + (c — a)?)’ (1)

(since ab(a — b) + be(b — ¢) + ca(c — a) = (a — b)(b — ¢)(a — ¢)). Let L(a,b,c) =
54 ((a —b)(b—¢)(a — ¢))* and R(a,b,¢) = ((a — b)*> + (b —¢)> + (c — a)2)3 Ifay =

a—c¢, by=b—cand ¢; =0,thena; — by =a—-b, by —c1r=b—c¢c, a1 —c1=a—c
so that L(a1,b1,c¢1) = L(a,b,¢) and R(ay,b1,c1) = R(a,b,c). It follows that it
suffices to prove (1) in the case when ¢ = 0, that is, to show that 54(a — b)2a2b? <
((a—0b)?+b*+ a2)3 or equivalently,

27a%b*(a — b)? < 4(a® + b* — ab)®. (2)

Now, it is straightforward to check the identity

4(a® +b* — ab)® — 27a*b*(a — b)® = (a — 2b)*(2a — b)?*(a + b)?
so that (2) writes as (a — 2b)2(2a — b)%(a + b)? > 0 and clearly holds.
Solution 2 by Arkady Alt, San Jose, California, USA. Due to cyclic sym-
metry of inequality we may assume that a = max {a,b,c}. Since the inequality is
obviously holds if b < ¢ (because then
ab(a—b) +be(b—c) +calc—a) = (a —b) (a — ¢) (b — ¢) < 0) suffice to consider only
case when b > ¢, thatisa>b>c. Letc =b—c,y=a—b,p=x+y,q = xy. Then
r,y>0,a=c+x+y,b=c+ur,
ab(a —b) +be(b—c)+ca(c—a) = (x+y)zy =pg,(a—b)>+ (b—c)? + (c—a)? =
(:c2 +y? + (z+ y)2) =2 (az2 +y? + my) =2 (p2 — q) and in the new notation the

inequality is
2

9v2pq < /3 (2 (p2 — q))3/2 , where ¢ > 0 and ¢ < pz(condition of solvability

Ty =q

, P 3/2 P2 B (3;02)3/2 9p? B 9p? 9p? B
‘/§<2<p 4)) W =35 23 23 28 "
Also solved by Kevin Soto Palacios, Huarmey,Peru; Ravi Prakash, New
Delhi, India; Nicusor Zlota, Traian Vuia Technical College, Focsani, Ro-
mania and the proposer.
64. Problem proposed by Arkady Alt, San Jose, California, USA. Let A (z,y,2) :=
2(xy +yz + 22) — (22 + y% + 2%) and let a,b,c be sidelengths of a triangle with
area F. Prove that

of Victa’s System { TEY=P i real z,y). We have v/3 (2 (p? — q))3/2—9\/§pq >

64F3
7
Solution by Michel Bataille, Rouen, France. In the featured solution of

problem 1973 in Mathematics Magazine, Vol. 89, No 4, October 2016, p. 297, it is
proved that

A (a3,b3,03) <

Ala,b,e) - Ala®, b, c") < (A(a, 1%, ¢%)’ &

whenever a, b, ¢ are positive real numbers. Taking for a, b, ¢ the sidelengths of the
triangle, we calculate

A(a,b, ) = 2(ab+betca)—(a+b%+c?) = 2(s>+r’+4rR)— (252 —2r2 —8rR) = 4r(r+4R) > 0
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where s, 7, R are the semi-perimeter, the inradius, the circumradius of the triangle,
respectively, and

A(a®,b%,c?) = 2(a®V? + b2 + a?) — (a* + b* + ¢*) = 16F?
(from Heron’s formula). Applying (1), we deduce
64F4
(a7,0%, %) < r(r+ 4R)
and see that it is sufficient to show that v/3F < r(r +4R) or, since F' =rs,
\/gs <r+4R.

We are done since the latter is a known inequality, proved in O. Bottema et al.,
Geometric Inequalities, Wolters-Noordhoff Publishing, 1968, 5.5, p. 49.

Also solved by the proposer.

65. Proposed by Dorlir Ahmeti, University of Prishtina, Department of Mathemat-
ics, Republic of Kosova. Find all function f : N — N such that mf(n) + f(m) is
divisible by f(m)(f(n)+ 1) for all m,n € N.

Solution by Michel Bataille, Rouen, France. The identity function idy, de-
fined by idy(n) = n for all n € N, is clearly a solution. We show that there are no
other solutions. To this end, we consider an arbitrary solution f and prove that we
must have f(m) = m for all m € N. For each pair (m,n) € N x N, we have

mf(n) + f(m) = g(m,n)f(m)(f(n) +1) (1)
for some positive integer g(m,n).
Let @ = f(1). With (m,n) = (1,1), (1) yields 2a = g(1,1)a(a + 1), hence 2 =
(a+1)g(1,1) and so a + 1 = 2, that is, f(1) = 1. From (1), we then deduce that

(29(m, 1) — 1) f(m) = m (2)
for any positive integer m. Consider any m > 1; such an integer can be written
as m = 2" - s for a unique pair (r,s) where r is a nonnegative integer and s is a
positive odd integer. Using (2), we obtain (2g(m, 1) — 1)f(2"s) = 2"s or, setting
f(2rs) =2"s" (7 > 0,5 odd), (2g(m,1) —1)2"' s’ = 2"s. This demands ' = r and
s’ = d, some divisor of s, so that f(m) = f(2"s) = 2"d where s = dd’ for integers
d,d’. Note that in particular f(2") = 2".

Now, equality (1) with m = 2"s and n = 2" (u € N) gives 2“d'+1 = g(m,n)(2"+1).
As a result, the integer 2* + 1 divides 2%d’ +1 = (2% + 1)d’ + 1 — d’, hence also
divides d’ — 1. Since u is arbitrary, d’ — 1 has infinitely many divisors. The only
possibility is d = 1 and so f(2"s) = 2"s. The desired result f(m) = m follows and
the proof is complete.

Also solved by the proposer.
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